Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Drugs ; 32(5): 537-547, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735116

RESUMO

Colorectal cancer (CRC) is a common malignancy. Sevoflurane has been reported to involve in the progression in several cancers. However, the molecular mechanism of sevoflurane in CRC progression remains unclear. Quantitative real-time PCR and western blot was used to detect the expression of miR-637 and WNT1. Cell migration, invasion and apoptosis were detected by transwell assay, flow cytometry or western blot, respectively. The interaction between WNT1 and miR-637 was confirmed by luciferase reporter assay, RNA immunoprecipitation assay and pull-down assay. We found sevoflurane could inhibit cell migration and invasion but induced apoptosis in CRC. Besides, the miR-637 level was decreased in CRC tissues and cells but could be rescued by sevoflurane. MiR-637 overexpression enhanced the anticancer functions of sevoflurane in CRC cells, while miR-637 inhibition showed opposite effects. WNT1 was confirmed to be a target of miR-637 and was inhibited by sevoflurane or miR-637. Importantly, knockdown of WNT1 reversed the carcinogenic effects mediated by miR-637 inhibitor in CRC cells treated with sevoflurane. Collectively, sevoflurane inhibited cell migration, invasion and induced apoptosis by regulating the miR-637/WNT1 axis in colorectal cancer, indicating a novel insight into the effective clinical implication for the anesthetic in CRC treatment.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , MicroRNAs/biossíntese , Sevoflurano/farmacologia , Proteína Wnt1/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Reação em Cadeia da Polimerase em Tempo Real
2.
Cardiovasc Drugs Ther ; 35(6): 1095-1110, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32474680

RESUMO

PURPOSE: This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/ß-catenin signaling pathway. METHODS: Rats were divided into sham, sham + Exendin-4 (10 µg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation. RESULTS: On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-ß1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3ß (p-GSK3ß), as well as total, phosphorylated, and nuclear ß-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, ß-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1ß and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of ß-arrestin-2 and PP2A, and ß-catenin phosphorylation but reduced the phosphorylation of GSK3ß and Smad3, and total ß-catenin levels in the LV of control rats. CONCLUSION: Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating ß-catenin activation and activating ß-arrestin-2, PP2A, and GSK3ß. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor ß-1 (TGF-ß1). GSK3ß is inhibited by phosphorylation at Ser9. Under normal conditions, ß-catenin is degraded in the cytoplasm by the active GSK3ß-dependent degradation complex (un-phosphorylated) which usually phosphorylates ß-catenin at Ser33/37/Thr41. After MI, TGF-ß1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces ß-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3ß. TGF-ß1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-ß1 stabilizes cytoplasmic ß-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3ß by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates ß-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, ß-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3ß (activation), thus reduces fibrosis and prevents the activation of ß-catenin and collagen deposition.


Assuntos
Exenatida/farmacologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Proteína Fosfatase 2/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , beta-Arrestinas/efeitos dos fármacos , Animais , Hemodinâmica/efeitos dos fármacos , Masculino , Fosforilação , Ratos , Ratos Wistar , Proteína Wnt1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...